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R Castañeda-Priego1, H H von Grünberg1 and M Kollmann2

1 Fachbereich Physik, Universität Konstanz, D-78457, Konstanz, Germany
2 Fachbereich Physik, Universität Freiburg, D-79104, Freiburg, Germany

Received 26 March 2004
Published 10 September 2004
Online at stacks.iop.org/JPhysCM/16/S3987
doi:10.1088/0953-8984/16/38/016

Abstract
In this work we investigate the experimentally observed electrohydrodynamic
instabilities in a confined suspension of lambda-DNA under strong electric
fields. We model the underlying stochastic motion of the DNA coils on a
coarse grained level, using continuous functions to describe the charge density
of the system in space and time. We find, within our approach, that in contrast to
previous results there are no long ranged violations of electroneutrality around
aggregates of lambda-DNA. We also show that although the corresponding
Debye layer is small on the surface of a given aggregate, the electric field can
induce a flow field of the solvent which in turn results in a stable pattern of
aggregates, which is in agreement with the experimental observations.

1. Introduction

Separation of DNA molecules by size using a capillary electrophoretic mechanism is frequently
used in medical applications, such as molecular genetic ones, in order to understand physical,
chemical and biological properties of DNA. Under some conditions depending on the
polyelectrolyte properties, on the applied electric field, or on the confinement geometry,
electrohydrodynamical instabilities in solutions of DNA have been observed and investigated
experimentally and theoretically [1].

We are here interested in the experimental study of electrohydrodynamical instabilities
carried out by Mitnik et al [2]. In this experiment a DNA solution, confined between two glass
plates, is exposed to an (AC or DC) external electric field. Figure 1 presents a sketch of the main
experimental finding. At t = 0 the aggregate possesses a coil configuration. Immediately after
the application of the field the aggregate is stretched in a direction perpendicular to the external
field. After a few more seconds (t � 3 s), the aggregate finds a metastable configuration with
tilted bands showing a zigzag pattern. In a DC field the angle between the bands and the
external field was found to be ±45◦; a solvent flow circulating around the aggregate could be
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Figure 1. A schematic drawing of the dynamical evolution of a droplet of concentrated DNA
solution in an electrolyte under strong electric fields, as observed in the experiments by Mitnik et al
[2]. The DNA solution is confined between two glass plates and exposed to an (AC or DC) external
electric field, �E0, applied parallel to the plates. The figure shows the top view of the droplet, in a
direction perpendicular to the glass plates. (a) t = 0, coil configuration. (b) t = 0.5 s, stretching
of the DNA aggregate in the perpendicular direction of �E0. (c) t � 3 s, quasi-stationary state: a
(metastable) zigzag pattern has formed.

observed. The pattern disappeared at larger times when the diffusion started dominating the
dynamics of the DNA aggregate [1, 2].

This interesting behaviour, known also in chaotic systems [3], has also been observed
in colloid suspensions [4, 5], in which the interparticle interaction is dominated by strong
dipole–dipole interactions, resulting from the large asymmetry of dielectric constants between
the solvent and the colloidal material. This dipole–dipole interaction forms the basis of theories
of electrorheological fluids [6–8], which when combined with hydrodynamic interactions may
explain the experiments in [4]. However, this explanation is certainly not applicable to the
system studied by Mitnik et al, which is lacking any sort of dipolar interaction. Isambert
et al [9] suggested a theoretical explanation for the observations of Mitnik et al which is
essentially based on the electrokinetic equations [10]. These authors argued that a perturbation
of the ionic density profiles over large distances (micrometres) led to a local ‘breakdown of
electroneutrality’, which induces a circulating flow field around the DNA aggregates leading
to the striking zigzag patterns. In our numerical study, we have found free charges only in a
thin (nanometre) double layer close to the surface of the DNA aggregates, but not in regions
extending over a micrometre. As regards the key role played by the circulating solvent flow, we
come to the same conclusion as Isambert et al. We find that the short range charge distribution
induces a flow field, which due to the long range nature of the hydrodynamic interactions [11]
extends over micrometres, and can ultimately explain the zigzag pattern.

Here, we use a time-dependent mean field approach based on electrokinetic equations,
where macroions, coions and counterions are treated at the same level of description. Each
ionic species is described by means of a continuous particle density distribution, which satisfies
an equation of conservation. The information on the solvent is included in the velocity field,
which satisfies a Stokes-like relation. We do not wish to explain here the stretching of the
DNA aggregate (figure 1(b)), but rather start from already elongated aggregates and seek for
an explanation of why these aggregates are tilted, showing a specific angle with respect to the
external field.
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Since the early and pioneering work of O’Brien and White [12], the full set of electrokinetic
equations have rarely been used to describe dynamical processes. On one hand, this due to the
high nonlinearity and complexity of these equations. On the other hand, the large asymmetry
in timescales and length scales between the particles in the electrolyte (microions) and the
macroions allows one to integrate out the former in the (slow) dynamics of the latter, which
gives rise to effective dynamical descriptions [13–15].

The paper is organized as follows. Section 2 presents the electrokinetic equations, and
a simple one-dimensional model calculation, performed using input parameters from the
experiment of Mitnik et al. These results allow us to simplify the electrokinetic equations
and to develop a quasi-dynamical perturbative description. In section 3 we apply our theory
to simulate the experiment of Mitnik et al, resorting to a two-dimensional model system,
explaining (i) the circulating flow field around the aggregates, (ii) the rotation of the aggregates
and, finally, (iii) the formation of the zigzag pattern.

2. Time-dependent mean field description

2.1. Electrokinetic equations

We study a system that is composed of three charged species, the molecules of DNA and their
monovalent coions and counterions. In addition, we have to take account of the solvent which
in our case is characterized by a dielectric constant ε, a bulk viscosity η and a velocity flow field
�v. In a mean field approach, each ionic species can be modelled by a particle number density
distribution ρi , which in the absence of chemical reactions satisfies the following conservation
equation:

∂tρi (�r; t) + �∇ · �Ji (�r; t) = 0, (1)

where i = 0, +,−. ρ0 describes the density profile of the negatively charged DNA molecules
and ρ+/− the profiles of the positively and negatively charged ions of the electrolyte. �Ji is the
ionic flux of each ionic species which here is assumed to be composed of three terms:

�Ji (�r; t) = −Di �∇ρi + ziµiρi �E + ρi �v, (2)

representing contributions arising from Brownian motion, electrophoresis and convection (in
that order). Here, Di are the diffusion coefficients and µi the corresponding mobilities. Both
quantities are taken to be constant. The quantity zi takes the value +1 (−1) if the charged
particle is positive (negative). The aggregate is always assumed to be permeable to the ionic
flux. The electric field �E satisfies the Poisson equation

�∇ · �E(�r; t) = e

ε
(ρ+ − ρ− − ρ0) ≡ e

ε
ρT(�r; t), (3)

where e is the elementary charge and ρT(�r; t) the density of all free charges (total charge
distribution).

We assume (the simplest approximation) that the velocity field obeys the Navier–Stokes
equation for small Reynold numbers and we also consider the solvent to be an incompressible
fluid. Then, the velocity field results from the so-called creeping flow equations [11]

η �∇2�v − �∇ P = − �F, (4)
�∇ · �v = 0, (5)

where P is the pressure in the system and �F the force acting on each point of the suspension,
given here by

�F(�r; t) = eρT(�r; t) �E(�r; t). (6)
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The set of equations (1)–(5) is known as the ‘electrokinetic equations’ [10]. It is solved
here numerically to study a DNA solution under a strong DC electric field, �E0. The whole
problem depends on a large number of parameters: Di , µi , zi , cs, c0, ε, η, �E0. Focusing on
a specific experiment, we here fix all these parameters to the values realized in the system
of Mitnik et al [2]. These are: D0 = 10−12 m2 s−1, D ≡ D+ = D− = 1000D0,
µ0 = 3 × 10−8 m2 V−1 s−1, µ ≡ µ+ = µ− = 10−7 m2 V−1 s−1, z0 = z− = −z+ = −1,
ε = 10−9 F m−1, η = 10−3 Pa s−1 and the external field E0 = 300 V cm−1. The concentration
of DNA molecules is c0 = 10−3 mol l−1, that of the salt ions, cs = 50c0. The timescale is
set to τ ≡ l2/D where l = 1 µm is a typical length scale in our problem. It is the timescale
connected with the diffusion of the electrolyte ions which is of order 10−3 s.

The electrokinetic equations are solved numerically with the appropriate set of initial
conditions and periodic boundary conditions on a rectangular lattice with a uniform grid. We
use a Crank–Nicholson scheme plus a time splitting operator to discretize and guarantee the
stability of the set of equations. Also, we use a two-dimensional standard discrete Fourier
transform algorithm with periodic boundary conditions.

2.2. One-dimensional analysis

The driving force in equation (4) is the total charge distribution ρT times the electric field. In
other words, by identifying the regions in space where ρT �= 0 we localize the regions where
the force field acts on the fluid of the solvent. Since the concentration of salt ions is a factor 50
higher than that of the DNA charges, ρT can be expected to differ from zero only in the small
volume of the double layer close to the DNA aggregate.

To set the stage we first study the effect of the high salt concentration on ρT; we set the
velocity field to zero, �v = 0, and consider the electrokinetic equations in a one-dimensional
model derived from the system in an early stage of the zigzag formation (figure 1(b)), and
model the shape of the aggregate simply by

ρ0(x; t = 0)

cs
=




c0

cs
= 0.02 x � |�/2|,

0 elsewhere,
(7)

where � = 2 µm denotes the width of the aggregate (estimated value taken from the
experiment [2]). The external field is applied in the positive x direction.

Figures 2(a) and (b) show the coion and counterion profiles at different times.
Antisymmetric profiles are found with a depletion of small ions on one side of the aggregate
and an excess of salt on the other side. This phenomenon, called concentration polarization,
has long been known and has been analysed to understand ionic fluxes through charged
membranes [16, 17]. Figure 2(c) compares ρ+ and ρ−, and shows that the two profiles
are identical on either side of the aggregate. This implies that in the regions where a salt
excess/depletion is observed, the system is nevertheless electrically neutral. In contrast to
what has been predicted in [9], no ‘breakdown of electroneutrality’ could be found here. Free
charges are found only in the very small volume of the double layer, as can be seen from the
total charge distribution ρT = ρ+−ρ−−ρ0 plotted in figure 2(d). Due to the high concentration
of salt, the thickness of the double layer is only of the order of 10−3 µm. We emphasize that
figure 2(d) does not show the charge distribution of the equilibrium double layer. Due to
the external field E0, it is not perfectly symmetric, which becomes obvious from figure 2(e)
showing the difference between the distribution ρT for finite E0 (figure 2(d)) and for vanishing
external field (the equilibrium double layer).

Furthermore, figures 2(a) and (b) demonstrate that the stationary state is reached after
a comparatively short time of only ≈5τ . By contrast, the timescale for the electrophoretic
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Figure 2. ((a), (b)) Time evolution of coion (a) and counterion (b) density profiles in the
neighbourhood of the DNA aggregate, characterized by a one-dimensional rectangle function,
equation (7). The aggregate, centred at x = 0, has a width of 2 µm. The density is scaled with the
reservoir salt concentration cs. (c) Comparison of the stationary coion and counterion profiles in
(a) and (b). (d) The stationary total charge distribution ρT = ρ+ − ρ− − ρ0, as obtained from the
profiles in (a) and (b) and from equation (7). (e) The difference of ρT for E0 = 300 V cm−1 and
for E0 = 0. All input parameters are chosen such as to simulate the experiments of Mitnik et al
[2].

motion of the aggregate is ∼50τ , and for its diffusional motion about 1000τ . In other words,
the formation of the ion profiles can be considered to be infinitely fast on the timescale of
the aggregate which we are interested in. One can check this more explicitly with our one-
dimensional model by solving the electrokinetic equation for a moving aggregate (equation (7)
with a typical time dependence). Indeed, there is hardly any effect of the motion of the aggregate
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on the total charge distribution ρT(�r; t). This splitting of timescales is used below to justify
the approximation, ∂tρT = 0.

2.3. Quasi-dynamical perturbative description

The solution of the electrokinetic equations in 2D or 3D becomes numerically very demanding.
One can considerably simplify the electrokinetic equations by exploiting some of the
observations just made. In particular, we focus on the equation of motion for the total charge
distribution and its solution, which is one of the key quantities in the creeping flow equations.

The three equations of motion (one for each ionic species; see equation (1)) are interrelated
through the total charge distribution, ρT(�r; t). First, we linearize the electrolyte distributions
around the mean value, ρ+/− = cs + δρ+/−. Figure (2) demonstrates that, indeed, |δρ+/−| � cs.
The electric field due to the charged species, δ �E , decays as fast as the total charge distribution,
and can be as strong as the external field inside the double layer. However, outside the double
layer we may assume that �E = �E0 +δ �E , where δE � E0, which is valid at large length scales.
Ignoring second-order terms, i.e., δρ+/−δ �E 	 0, we then find, after some algebra,

∂tρT − D �∇2ρT + µ �E0 · �∇ρT + �v · �∇ρT +
2µcse

ε
ρT

= Deff �∇2ρ0 − µeff �E0 · �∇ρ0 − 2µ �E0 · �∇δρ−, (8)

which is the equation of motion of the total charge distribution. Deff ≡ D − D0 	 D and
µeff ≡ µ + µ0 	 2µ. We next use the fact that the dynamics of the electrolyte ions is much
faster than that of the aggregate (figure 2), and set ∂tρT = 0. This assumption holds on the
timescale characteristic of the aggregate. Then, equation (8) can be solved in Fourier space:

ρT(�q) = − (Deff q2 − iµeff �E0 · �q)(Dq2 + iµ �E0 · �q − i�v · �q)

(Dq2 − iµ �E0 · �q − i�v · �q)(Dq2 + iµ �E0 · �q − i�v · �q) + 2µcse
ε

(Dq2 − i�v · �q)
ρ0(�q),

(9)

where, for the moment, we have considered a constant velocity field �v. The effect of the
approximations made in deriving equation (9) can be tested by reproducing ρT in figure 2(d),
with �v = 0. The resulting curve is almost indistinguishable from the curve in figure 2(d),
which is due to the fact that the assumption δE � E0 fails only in a negligibly small region of
the double layer. So, ρT resulting from equation (9) seems to be an excellent approximation
everywhere in space, even inside the double layer. For the one-dimensional case, the inverse
Fourier transform of ρT(�q) in equation (9) can be calculated analytically. In two and three
dimensions this is not possible; the inverse transformation has to be carried out numerically.

We next exploit the specific geometry of the experiment we here wish to describe [2].
The glass plates are separated by a distance d 	 10 µm. The DNA aggregates remain on
the mid-plane between the two plates, i.e., the movement in the perpendicular direction to the
plates is considerably suppressed and can be ignored. This allows us to focus our investigation
just on the mid-plane and to apply another set of approximations. We here follow [9]. We
assume that the velocity field between the plates is well described by a parabolic profile, having
the following form [18]:

�v(�r) = [
1 − (2z/d)2] �v2D(x, y), (10)

where �v2D represents the velocity field on a x–y plane parallel to the plates. Equation (10) is
placed into equations (4) and (5) at z = 0 (mid-plane), where the parabolic profile reaches its
maximum value. Also, we apply the well-known Hele–Shaw approximation which consists
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in assuming −�∇P + �F in equation (4) to be independent of the z component. Then, the
two-dimensional version of the creeping flow equations reads

η
( �∇2

2D − 8/d2
)

· �v2D − �∇ P = − �F, (11)

�∇2D · �v2D = 0. (12)

Due to the linearity of the creeping flow equations they can be rewritten as

�v2D(�q) = T (�q) · �F(�q), (13)

where �F(�q) is the Fourier transform of the equation (6) and T (�q) is the two-dimensional Oseen
tensor [11], which has the form

T (�q) = 1

η
(
8/d2 + q2

) [
1̂ − �q �q

q2

]
, (14)

where 1̂ is the 2 × 2 identity matrix and �q �q denotes a dyadic product. The Poisson equation,
equation (3), can also be solved in Fourier space. Then, each component of the electric field
is given by

δEk(�q) = −i
e

ε

qk

q2
ρT(�q), (15)

where k = x, y. The last equation describes the time evolution of the DNA aggregate; it results
from the combination of equations (1), (2) and (5) for the component i = 0:

∂tρ0 − D0 �∇2ρ0 − µ0 �∇ · (ρ0 �E) + �v · �∇ρ0 = 0. (16)

We are now in a position to describe our numerical scheme. The four central equations
are (i) equation (9), providing a solution for ρT, (ii) Poisson’s equation in equation (15),
(iii) equation (13), the creeping flow equation, and (iv) equation (16) for the aggregate
dynamics. They are solved iteratively and always with periodic boundary conditions. We
start with a given model form of ρ0(�r; t = 0) and, assuming �v to be zero everywhere, calculate
ρT(�q) from equation (9) and place this into the Poisson equation (15) to obtain �E(�q). Both
�E(�q) and ρT(�q) are needed in equation (13) to compute the Fourier transform of the velocity

field. We then compute the spatial average of the velocity field and place this in equation (9) to
compute again ρT(�q). This cycle is iterated until convergence is achieved. The velocity field
and the electric field, after a transformation back to real space, are finally used in equation (16)
to propagate the aggregate ρ0 by one time step.

From the numerical point of view, this procedure means a considerable simplification.
Instead of the large set of nonlinear differential equations, the electrokinetic equations, one
now has to solve just one differential equation, equation (16), and the Fourier inverse of the
equations (9), (13) and (15). One should keep in mind, however, that our description is adapted
to a specific experiment and is valid only in the high salt limit and if strong external electric
fields are applied.

We would like to point out that our quasi-dynamical description for the total charge
distribution given in equation (9) reduces to that proposed by Isambert et al [9] on ignoring the
diffusion effects and velocity fields in equation (9) and assuming that the system has reached
the stationary state, ∂tρT = 0. In that case, the total charge distribution is given by three terms
which depend on the electrophoretic and diffusional properties of the aggregate and the gradient
of the salt concentration. This last term was already used in the Isambert et al approach in
order to calculate the velocity and electric fields in a similar way to in equations (13) and (15),
respectively. However, such a procedure is not fully self-consistent and could give rise to
unphysical effects such as the ‘breakdown of the local electroneutrality’ at large distances as
addressed in [9].
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3. Two-dimensional simulation of the experiment

3.1. Circulating velocity flux

We first model the charge distribution of a lambda-DNA aggregate by a two-dimensional
rectangular function

ρ0(x, y)

cs
=

{
0.02 x � |�/2| and y � |L/2|,
0 elsewhere,

(17)

where L (=2 µm) is the length of the aggregate, which is larger than its width � (taken here to
be 1 µm). In the strong electric field limit, E0 
 δE , the velocity field, given by equation (13),
reduces to

�v2D(�q) = eρT(�q)

η
(
8/d2 + q2

)
[

�E0 − �q · �E0

q2
�q
]

. (18)

Equation (18) illustrates that the flow field depends explicitly on the direction of the external
field. For the case at hand, using the initial aggregate configuration described by equation (17),
we found that the maximum velocity amplitude (v2D 	 10 µm s−1) predicted by equation (18)
is in quantitative agreement with the experiments [2].

To explore the system we first study the evolution of the velocity field for the model
aggregate in equation (17) which, for the moment, is not allowed to move in space. The
external electric field forms an angle θ = 45◦ with respect to the x-axis; that is, we have finite
values for the components E0,x and E0,y . Figure 3(a) shows a cut in the x direction of the
velocity field at y = L/2. The strong peaks are important; the oscillations are artefacts due
to numerical noise. Comparison with figure 2(d) shows that the velocity distribution closely
follows the total charge distribution. The field couples to the positive and negative charges
of the double layer and drags them in opposite directions; this can be observed on both sides
of the aggregate. It is clear that if the electric field is perpendicular to the aggregate, i.e., if
E0,y = 0, the velocity field is zero at y = L/2. Like the total charge distribution in figure 2(d),
the peak structure in figure 3(a) is not symmetric, as becomes evident when adding the two
peaks. This is plotted in figure 3(b). One may consider this flow field as the net velocity field
resulting from a coarse graining procedure. It is seen to be in the positive y direction on one
side and in the negative y direction on the other side. Clearly, this net flux results from the
asymmetry in the total charge distribution which in turn is due to the presence of an external
field. It is then clear that the net flux is zero if E0,x = 0. At this point, one recognizes the
twofold role of the electric field: it is necessary

(i) to polarize the double layer for an asymmetric charge distribution on the right- and the
left-hand sides of the aggregate, and

(ii) to drag the charges through the solvent, within both layers of the double layer and parallel
to the surface of the aggregate.

This requires finite values of both the components E0,x and E0,y, that is, a finite angle θ between
the director of the aggregate and the electric field. Of course, the same argument is valid at
the top and bottom of the aggregate. This means that an asymmetric double layer is observed
due to E0,y �= 0, and a net flux resulting from the coupling between the free charges in those
regions with a finite E0,x .

The whole (coarse grained) velocity distribution in the x–y plane is to be seen in the inset
figure. It is a clockwise circulating flux, confined essentially to the region occupied by the
double layer. In agreement with the explanation given above, the flux should be anticlockwise
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Figure 3. (a) A cut through the solvent flow field at y = L/2 in the strong electric field limit
around the surface of a two-dimensional aggregate, modelled here by a rectangular function of
width 1 µm in the x direction and of length 2 µm in y direction which is centred on the origin of
the coordinate system. (b) The coarse grained velocity field, obtained from (a) by adding the two
peaks on either side of the aggregate. The inset shows the net velocity field in two dimensions.

if the angle between the external field and the aggregate is negative. We have explicitly checked
that this is the case. A circulating velocity field has also been observed experimentally [2, 9].

3.2. Rotating aggregate and zigzag pattern formation

We now study the dynamics of the aggregate. We wish to show that the circulating velocity
field produced by the asymmetry of the total charge distribution will lead to a rotation of the
aggregate towards a quasi-stationary position where the shear stress is extremal. We use an
aggregate model that is numerically more convenient than the rectangular function used so
far. In the following, the aggregate is represented by a ellipsoidal Gaussian function with two
half-axes between 1 and 2 µm in length; see inset of figure 4. The direction of the aggregate is
specified by an orientational vector �n, which initially forms an angle ϕ0 with the external field.
The angle between �n and the x-axis is defined by α. Explicitly, the ellipsoidal-like aggregate
has the form

ρ0(x, y)

cs
= 0.02 exp[−(1/a)(x cos α + y sin α)2 + (1/b)(−x sin α + y cos α)2], (19)

where the parameters a and b allow us to handle the eccentricity of the aggregate.
The dynamical evolution of the aggregate results from the solution of equation (16). We

solve this equation relative to the centre of mass of the aggregate. The evolution of the angular
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Figure 4. The time evolution of the angular shift of an isolated aggregate having an initial orientation
relative to the external electric field of ϕ0 = 15◦, 30◦, 45◦ . The aggregate reaches a quasi-stationary
state when ϕ 	 55◦.

shift can then be obtained from

�ϕ(t) =
∫

ρ0(�r; t)|�r × �v2D| d�r∫
r2ρ0(�r; t) d�r �t, (20)

where �r = xî + y ĵ and �t denotes the time step used in our numerical solution.
Figure 4 shows the angular evolution of the aggregate model for different values of ϕ0.

The aggregate reaches a quasi-stationary configuration at ϕ 	 55◦ which is independent of the
initial values of ϕ0. We checked that this result is independent of the box size, the mesh size
and the time step used in our numerical scheme. The stable configuration corresponds to the
situation with maximum shear velocity. This can be seen by taking q → 0 in the expression
of the total charge distribution, equation (4),

ρT → −µeff

µ
ρ0, (21)

from which one obtains the following shear velocity:

�v2D = −csd2

8η

µeff E0ρ0

µ
�nM , (22)

with �nM = (cos(θ) cos(ϕ) − sin(θ) sin(ϕ))î + (cos(θ) sin(ϕ) + sin(θ) cos(ϕ)) ĵ . θ is the angle
between �E0 and the x-axis, ϕ that between �E0 and �n. From this equation we can easily check
that the shear velocity reaches a maximum value, independent of θ , when ϕ = 60◦, which is
in a qualitative agreement with the value observed in figure 4.

We next study the angular evolution of a collection of ellipsoidal aggregates. Specifically,
we analyse the dynamical behaviour of the system depicted in figure 5. Each aggregate is
characterized by an orientational vector �ni (i = 1, 2, 3, 4). We here allow for just one degree
of freedom given by the angle ϕ between neighbouring aggregates as indicated in the figure.
Together with the periodic boundary conditions which we have applied here, this simulates a
macroscopic sample of DNA aggregates forming zigzag patterns, as observed in the quoted
experiment.

In figure 5 we show the angular shift as a function of time for five different values of
the initial angle ϕ0. In all cases, the quasi-stationary configuration is reached when the angle
of tilt is ϕ 	 45◦, which is in excellent agreement with the experimental observation [2].
We find a solvent flow circulating clockwise (anticlockwise) around the aggregates �n1 and �n4
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Figure 5. The time evolution of the angular shift of a collection of four DNA model aggregates,
starting from various initial angles ϕ0 as indicated. Due to hydrodynamic interactions the aggregates
now find a quasi-stationary state when ϕ 	 45◦.

(�n2, �n3). The collection of aggregates tries to find a spatial arrangement such as to minimize
the friction between the circulating flow fields around each aggregate. This is obviously the
case if ϕ 	 ±45◦. It is thus recognized that the circulating velocity field is not to be seen as a
side-effect, but rather as the origin of the formation of the zigzag pattern. The 10◦ difference in
quasi-stationary state angle found between aggregates in isolation (figure 4) and ones gathered
in a group (figure 5), highlights the important role played by the hydrodynamical interactions.

4. Conclusions

In the present paper we have focused on one class of instabilities observed in experiments
performed by Mitnik et al [2]. We have used a time-dependent mean field description, based
on the electrokinetic equations, in order to understand the main mechanism responsible for
the tilted bands and the formation of zigzag patterns in DNA solutions under the influence of
a strong electric fields. Reducing the full set of electrokinetic equations, we developed and
tested a self-consistent, quasi-dynamical and much simpler description which is valid for high
salt concentrations and strong electric fields.

Based on our numerical studies presented in this paper, we suggest the following
explanation for the formation of tilted bands.

(i) Due to the high salt content, free charges can be found only in the thinO(10−3 µm) double
layer close to the surface of the aggregate. This double layer is asymmetric if the electric
field has a component perpendicular to the double layer.

(ii) The driving force in the creeping flow equation is the charge distribution times the electric
field. For this reason, the flow field is essentially confined to a small region near to
the surface of the aggregates where free charges are to be found. If the double layer is
asymmetric, there are net flows in opposite directions on either side of the aggregate, and,
as a result of this, one finds a circulating flow around the aggregate. This requires an
electric field component parallel to the electric double layer. The electric field is thus
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necessary to polarize the double layer, but also to drag the charges within the double layer,
i.e., parallel to the double layer. In other words, a circulating flow is possible only for
angles ϕ between the electric field and the aggregate direction that are between zero and
90◦.

(iii) An isolated aggregate reaches a quasi-stationary state at 55◦ where the flow field is found
to be extremal.

(iv) By contrast, a collection of aggregates forms tilted bands with a relative stationary state
angle of 45◦. This diamond-like arrangement of aggregates, also found in the experiment
of Mitnik et al, seems to result from hydrodynamical interactions that can be associated
with the solvent circulation around the individual aggregates.
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